

Proposal of balloon and satellite observations of MeV gamma-ray using ETCC for reaching a high sensitivity of 1 mCrab <u>A. Takada</u>, T. Tanimori, H. Kubo, T. Mizumoto, Y. Mizumura, T. Sawano¹, K. Nakamura, Y. Matsuoka, S. Komura, T. Kishimoto, M. Oda, T. Takemura, S. Miyamoto, Y. Nakamasu, K. Yoshikawa, J. D. Parker, K. Miuchi², S. Kurosawa³ (Kyoto University, ¹Kanazawa University, ²Kobe University, ³Tohoku University)

We need a new MeV gamma-ray telescope

1. Open an MeV gamma-ray window

MeV gamma rays from hundreds keV to tens MeV provide us the information of nucleosynthesis in supernovae, particle acceleration in jets of active galactic nuclei or gamma-ray bursts, and strong gravitational potential around black hole candidates. Especially, line gamma rays from fresh radioisotopes are unique probe for direct search of nucleus factories. ⁵⁶Ni produced in type Ia supernovae, which are famous standard candles in universe, determines the explosion mechanism. Long-lived isotopes such as ²⁶Al or ⁶⁰Fe have the information of old star production or material transmission in our galaxy. In addition, the universe in MeV region is transparent, we can thus see the first star as a long gamma-ray burst. However, the current detection sensitivity is not directional information. enough to study such interesting phenomena.

What is the problem?

-> Huge background obstructs the observations.

2. Electron-Tracking Compton Camera

Gas TPC

Cosmic rays create gamma rays, neutrons, and charged particles by the interaction with the satellite body. Using coded aperture imaging or usual Compton imaging, we can not obtain two angles of incident direction, event by event. Therefore, the detectors can not exclude the instrumental BG completely. If we use a telescope having a well-defined point spread function, the observations will include only BG on the line of sight

cf.) observation of SN2014J:

having a well-defined point spread function of ~1 degree.

Effective area

flux: 5×10^{-6} ph/c/cm²/keV (847 keV), effective area: 65 cm^2 100 days & $\Delta E \sim 50$ keV \rightarrow detection: $\sim 1.5 \times 10^5$ events significance 4.7 σ -> included BG events: ~10⁹ events

directional information. If the detector can reduce BG to 1/1000, significance is ~150 $\sigma.$

Energy [keV]

Raw spectrum (SPI/INTEGRAL)

measured with single pointed

Point Spread Function

To open the MeV gamma-ray window, we need a new telescope having a good point spread function (PSF), a large effective area, and a wide field of view. For these purposes, we are developing an electron-tracking Compton camera (ETCC). Our ETCC consists of a gaseous time projection chamber (TPC), which detects the track and energy of the recoil electron, and a scintillator, which detects the absorption point and the energy of the scattered gamma ray. Although ETCC detects gamma rays using Compton scattering similar to COMPTEL, new information of electron tracking (two directional angles and energy loss rate: dE/dx) provides us clear images with a sharp and well-defined PSF and strong background rejection compared to the conventional MeV gamma-ray detectors.

Reconstructed gamma-ray images and calculated PSF (w/o optimize algorithm)

9 300 r

GSO pixel scintillator array How to realize a well-defined PSF? The angular resolution of usual telescopes are described with a point spread function (PSF). Until now, the angular resolutions of Expected detection sensitivity Compton cameras including ETCCs are evaluated by angular resolution measure (ARM) and scatter plane deviation (SPD), each parameter however does not represent a PSF. The left figure shows the cumulative ratio with different ARM/SPD Ś resolutions as a function of radius angle. This figure says that the PSF of Compton camera depends on ARM and SPD, and the C PSF of conventional Compton imaging is limited by the range of scattering angle. For realizing a PSF of ~1 degree, an ETCC needs an ARM of ~2 degrees FWHM and SPD of ~5 degrees FWHM. Why gaseous Compton target? Because the density of gas detector is low, people think that a gaseous Compton target is not useful. But it is not correct. The left table is simple calculations of probabilities and cross sections of Compton scattering. This table says that a cross section of a gaseous detector is as large as that of a Si-stack detector. Thus, a gaseous Compton target does not become a disadvantage for

gamma-ray detection. To obtain SPD of ~5 degrees, we must

ge CI	e 300 keV probability @ 600 keV ometrical area ross section @ 300 keV	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		$(1 \text{ layer : } 1.22 \text{ /s})$ 13.1% $(1 \text{ layer : } 0.930 \%)$ $10 \times 10 \text{ cm}^2$ 16.8 cm^2	decide the recoil direction within the ~10 ⁻⁵ radiation length. For this purpose, a gaseous and solid detectors must have sub-mm and sub-µm sampling, respectively. Thus a gaseous detector needs 10^{3-4} ch readout circuits, and a Si-stack detector must have 10^{7-8} ab readout circuits. A gase is a unique meterial for Compton of readout circuits.						
CI	ross section @ 600 keV	3.47 cm ²	22.3 cm ²	13.1 cm ²	ch readout circuits. A ga camera having a large ef	fective area and a sh	harp PSF.	operation of the Satellite	e-ETCC was assumed.		
3	3. Expected observations with SMILE-satellite ADJ (2015) ²⁶ Al, which is produced in AGB										
Nuc topi How line SN ~0.6 emis cha	Nucleosy cleosynthesi ics in MeV g vever there gamma-ray Ia produces 6M _o , and va ssion is exp in as shown	In the side of the	Supernova e of main ronomy. ctions of esh RIs. A e mass of ma-ray Ni decay joure But	e and its explosion 5^{6} Ni $(\tau_{1/2} = 6.1 \text{ d}) - 10^{-27}$ Expected spectrum 10^{-28} (20.1 days) 10^{-29} 10^{-30} 10^{-30} 158 5^{6} Ni 270	$\begin{array}{c} \text{osion mechanism} \\ \rightarrow 5^{6}\text{Co} (77.2 \text{ d}) \rightarrow 5^{6}\text{Fe} \\ \hline 5^{6}\text{Co} 847 1238 1771 2598} \\ \text{um} 1038 2038 3253} \\ \text{b} 1038 2038 3253} \\ \text{keV} \\ \hline 0 812 \\ \hline 480 750 1561 \end{array}$	Single Degenerate ©David A. Hardy/AstroArt Double Degenerate	stars, Wolf-Raye outflows of novae probe of material ²⁶ Al has a decay t time scale of diff was observed by 6 but the images is Stimation As the distribution	stars, type-II SNe, or , is expected to become a diffusion in galaxy, becau ime of 7×10 ⁵ years as low usion in galaxy. Its distri COMPTEL and SPI/INTE not clear for the detail s of ²⁶ Al observatio	a use ng as bution GRAL, tudies. by SMILE-satellit	$\sum_{n=1}^{\infty} \frac{1}{280} = \sum_{n=1}^{\infty} \frac{1}{26} = \sum_{n=1}^{\infty} \frac{1}{26$	
the froi SN2 On	detections m ⁵⁶ Ni/ ⁵⁶ Co 1987A and S the other h	of 0.85 MeV of are only two s SN2014J. hand, the proge	gamma ray samples: enitors of SN	Ia	2013) keV 500 0.7 1 keV MeV MeV MeV MeV light-curve JV-O-IR Null W7 3PA	CURVE by SPI/INTEGRAL SPI 1220-1272 keV R DDT DDT1P4 DETO HEDO DDT1P1 3DBall DD4 DDT1P4balo	diffuse and extra in the below table sources Gamma ray from ²⁶ Al	galactic diffuse gamma re	ay. The intensity and distr distribution Using all sky survey data	ibution of each sources are listed Assumed all sky map at 1.8 MeV (template: COBE DIBRE 240 μm) COBE data from http://lambda.gsfc.nasa.gov	

http://www-cr.scphys.Kyoto-u.ac.jp/research/MeV-gamma/