

SMILE: 電子飛跡検出型コンプトンカメラによる MeVガンマ線天体探査実験

京都大学 高田淳史 谷森達, 窪秀利, J. D. Parker, 水本哲矢, 水村好貴, 澤野達哉, 中村輝石, 松岡佳大, 古村翔太郎, 中村祥吾, 小田真, 岸本哲郎, 竹村泰斗, 宮本奨平, 身内賢太朗, 黒澤俊介

電子飛跡検出型コンプトンカメラ

SMILE-II Flight Model

- ガンマ線画像取得
- かに星雲・Cyg X-1の観測
- (30cm)³の検出器

高度~40km数時間でかに星雲観測を 3σ以上の有意度で観測 → 要求値:有効面積 >0.5 cm² 角度分解能 <10度

Weight: ~250kg + a Power: ~250W

要求性能はクリア済

「ガス」検出器であることについて

	ガスTPC		半導体
	Ar 1 atm	CF ₄ 3 atm	Si
電子の数	18	42	14
密度	1.78 mg/cm ³	10.9 mg/cm ³	2.33 g/cm^3
厚み	300 mm		0.5 mm×32層
散乱確率 300 keV	0.507 %	3.26 %	32.5% (1層:1.22 %)
散乱確率 600 keV	0.386 %	2.48 %	25.8 % (1層:0.930 %)
幾何面積	30×30 cm ²		$5 imes 5~{ m cm^2}$
散乱有効面積 300 keV	4.56 cm ²	29.3 cm ²	8.13 cm ²
散乱有効面積 600 keV	3.47 cm ²	22.3 cm ²	6.46 cm ²

「ガスだから有効面積が小さい」は間違い!!

微弱線源を用いた測定

²²Na 鉛2mmで遮蔽 (**27 kBq 相当**)

S/N Crab予想 : ~0.02 微弱線源: 0.005~0.01

Crab-S/Nの0.5倍以下で

ETC

- 撮像試験に成功!
- 系統誤差(±30%)で 線源強度一致

低S/Nでの 定量性を確認

日本物理学会 第69回年次大会 30aTK-1

2014/3/30

時間変動するガンマ線源のイメージング 835 keV±10% ~10 min/frame ~3 hours ETCC No source ~20 min ETCC +0.01 µSv/h ~3 m ⁵⁴Mn (835 keV, 1 MBq) 1 MBg @ 3 mのガンマ線源 10分で3の優位度で検出!

高雑音環境下におけるガンマ線観測

140 MeV陽子を水ターゲットに照射
 ⇒ ガンマ線・中性子・陽子などの高雑音環境

- エネルギーと画像の取得に成功
- 検出効率は低雑音環境とほぼ同じ

ETCCの雑音除去能力の高さを証明

従来型コンプトンカメラにおける感度劣化

Geant4 Simulation

ガンマ線偏光測定の可能性

Experiments

ガンマ線偏光測定の実証実験 cgunts ¹³³Ba (1.7 MBq) パラフィン(10x10x5 cm²) 356 keV < 320 keV でCompton 散乱 Lead (5 cm) Normalized 170~260 keV <u>30cm</u> ETCC Fit Eq. $A+B\times sin(2\Phi+C)$ (all free) -150 -100 -50 0 50 100 150 Azimuth angle Φ [deg] パラフィン中で~90°の散乱 **90**° 回転 偏光度~40% (G4 simulation) \Rightarrow 0.95 0.9 0.85 < 320 keV Signal : BG = 0.08 : 1 低いSN比で偏光の検出に成功 0.83 0.83 0.80 0.75 0.75 0.75 2015年1月末にSPring-8でビーム試験を予定 -150 -100 -50 0 50 100 150

Azimuth angle Φ [deg]

まとめ

- MeVガンマ線天文学の開拓に必須な 低雑音化と高精度イメージ取得に成功
- ガス検出器であることにデメリットはない
- ▶ かに星雲観測を目的とした次期気球実験SMILE-II

要求值 有効面積: >0.5 cm² 角度分解能: <10°

現状值 有効面積:~1 cm² 角度分解能:~6°

高度40 km 3時間で5oの有意度で観測可能

かに星雲観測は必須 Ft. Sumnerでの観測を計画中

SMILE-II+ Ar 2 atm, GSO 3 R.L. -> 4 cm², 偏光観測も可

- 大量の雑音下においても検出効率を落とさずにガンマ線を観測可
- ► SMILE-III∧

CF₄ 3 atm+GSO (3 R.L. & 面積拡大) ⇒ >10 cm² 気球でも新しい物理の探索が可能に