

長時間気球による MeVガンマ線天文学の開拓

京大理 高田淳史

谷森達, 窪秀利, J. D. Parker, 水本哲矢, 水村好貴, 古村翔太郎, 岸本哲朗, 竹村泰斗, 宮本奨平, 中增勇真, 吉川慶, 黒澤俊介 (東北大), 澤野達哉 (金沢大)

MeV天文学

ラインガンマ線

◆元素合成

超新星残骸,銀河面

連続スペクトル

◆粒子加速

活動銀河核のジェット

◆強い重力場

ブラックホール

◆遠方宇宙

活動銀河核の分類, ガンマ線バースト

◆その他

ガンマ線パルサー, 太陽フレア

Fluxes of 847 and 1238 keV lines + continuum below 511 keV

Broad band SN2014J spectrum and the model (day 75) How to discriminate between sky and BG?

RA G, Science Day - Garching, 23.07.2014

Thomas Siegert

電子飛跡検出型コンプトンカメラ

- T. Mizumuto+, NIM A 2015
- Y. Matsuoka+, JINST 2015
- Y. Mizumura+, JINST 2014

- 反跳電子のエネルギーと3次元飛跡
- シンチレーションカメラ

散乱ガンマ線のエネルギーと吸収点

- 反跳方向取得による高品質イメージ
- ・ エネルギー損失率による粒子識別
- α角によるコンプトン運動学テスト
 - ⇒ 強力な雑音除去能力

Energy Deposit [keV]

A. Takada+, ApJ 2011 A. Takada+, JPSJ 2009

1st balloon experiment (SMILE-I)
Sub-MeV gamma-ray imaging Loaded-on-balloon Experiment

Launched on Sep. 1, 2006 @ Sanriku (ISAS/JAXA)

- Test flight using (10 cm)³ ETCC
- Measure diffuse cosmic and atmospheric gamma ray 0.1 - 1 MeV, @ 35 km, 3 hours

ETCC

Measured: 420 events

Simulation: ~400 events (cosmic + atmospheric)

Non-gamma events: < 2%

Compton kinematic test and Particle identify provided low-background observation.

検出感度の見積り

検出感度: $3 \times \sqrt{\frac{f_B \Delta \Omega \Delta E}{AT}}$

3σの有意度で検出できる最小flux

 f_B : 雑音量

A: 有効面積

ΔΩ: PSF

これらを見積れば 検出感度が予想できる

最終目標:1 mCrab

⇒ ~1度の角度分解能

実際のコンプトン望遠鏡では...

COMPTEL 予想の1/3の検出感度

LXeGRIT Crabの検出できず

NCT (Crab) 予想の1/6の検出事象数

何かの見積もりを根本的に誤っている? PSF~ARMは本当か?

コンプトン望遠鏡の $\mathsf{PSF}(\Delta\Omega)$ を再検討 宇宙ではnoise優位

感度 ∝ S/√N

観測領域 $(\Delta\Omega)$ 内への 雑音量が支配

同程度の角度分解能?

コンプトン望遠鏡の角度分解能

Angular Resolution Measure:

コンプトン散乱角の決定精度

Scatter Plane Deviation:

Projection-plane

PSF > 30°

~ARN

散乱方向を軸とする散乱平面の決定精度

COMPTELのデータ空間: V. Schönfelder et al., ApJSS, 1993, 86, 657

散乱方向(χ,ψ)と散乱角(φ)の3次元空間

コンプトン事象は45°の円錐状に分布

円錐の頂点 = 線源の位置

φ軸方向の平均的な揺らぎがARM

, 頂点の(χ,ψ)平面上の揺らぎはARM程度? | 天空上のevent circleの広がり ~ 平均的な散乱角

ETCCで実際に取得したデータ

PSFはARMともSPDとも一致しない

Point spread function

- 同じARMでもSPDの違いによってPSFに大きな差がある
- > ARM ≠ PSF
- > SPDが悪い ⇒ 測定領域に周囲からの大量のもれこみ中心のevent数も激減

imaging spectroscopy(漏れ込みの効果)

bandwidth: $662 \text{keV} \pm 10\%$

-0.5

flux ratio -> 137Cs : 152Eu : 133Ba : 60Co

= 1 : 1.4 : 0.73 : 0.56

¹³⁷*Cs*の位置から直径10° をイメージングカット (漏れ込みの効果を見るための敢えて狭いカット)

SPDが小さくなることで 周囲からの線源やBGの漏れ込みを抑えられる

400

600

800

Energy [keV]

200

ETCC(従来解析)

ETCC(TOT補正)

Imagingによる分光

低S/Nの観測対象を、SMILE-II ETCCは撮像できるか?

鉛2mmで遮蔽した²²Na (27 kBq 相当)

Crab 観測予想: S/N~0.02

実験: S/N = 0.005~0.01

到達予想検出感度

PSFの明確な定義

⇒ 予想検出感度の不定性が排除

	Gas	TPC size	Scintillator	PSF (662 keV)
SMILE-II	Ar 1 atm	30 cm-cube	GSO 1 R.L.	~12°
SMILE-II+	Ar+CF ₄ 1.5 atm	30 cm-cube	<i>G</i> SO 2.5 R.L.	~5°
SMILE-III	CF ₄ 3 atm	60×60×30 cm ³	GSO 2.5 R.L. (bottom only)	~5°
satellite	CF ₄ 3 atm	(50 cm-cube)×4	GAGG 10 R.L.	~2.5°

銀河系外拡散ガンマ線の起源特定

Cosmic Background Radiation

MeV領域系外diffuse起源

- Ia型超新星?
- 少量の明るいFSRQ?
- 暗いSeyfertがたくさん?

豪州気球 (SMILE-II, 104 sec)

⇒ > 5000 events
詳細なスペクトルが取得可能

Exploring GRB astronomy by Balloon-SMILE 1. SMILE-II one-day flight(s) for Crab and Cyg X-1 (Anytime, OK)

- 2. Next plan, SMILE-III Long-duration flight with larger ETCCs

Polar region 14-50 days ($T_{obs} > 10^6 sec$)

40 cm-cubic ETCC x2 modules (Eff. Area ~80 cm²)

GRB Search in Long duration flight

 $10^6 \text{ s} \longrightarrow ~3 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ (+ FoV of 4 str)} \longrightarrow ~1 GRBs/day}$

In addition, Polarization Modulation factor 0.6 at 130 keV in SPring-8

MDP ~ 6% for 10^{-6} erg cm⁻² s⁻¹ (2-3 GRBs/month)

~ 20% for 10⁻⁷ erg cm⁻² s⁻¹ (~10 GRBs/month)

GRB detection in SMILE-III Simulated by T. Sawano

Ia型超新星爆発の起源特定

satellite

⁵⁶Ni (6.1 days) \rightarrow ⁵⁶Co (77.2 days) \rightarrow ⁵⁶Fe

高エネルギー降りこみ現象

SMILE-III

Figure 1. X-ray imager data taken during the relativistic electron precipitation event of August 20, 1996. The X-ray count rate between 20 and 120 keV is averaged over 1 s. The 10-20 s modulation is most clearly visible superposed on the peak starting near 1545 UT.

K. R. Lorentzen et al., (2000)

MAXIS Observations of ~100 keV microburst precipitation

E. Turunen et al. / Journal of Atmospheric and Solar-Terrestrial Physics 71 (2009) 1176-1189

Simulation by E. Turunen et al (2009)

まとめ

- ▶ MeVガンマ線天文学の開拓にはImaging Spectroscopyが必須
 - ⇒ 明確に定義された細いPoint Spread Functionが必要
- ▶ 従来コンプトン法では観測領域外から大量にもれこむ
 - ⇒ 観測領域外のガンマ線源が完璧に理解できないと 観測領域のガンマ線源を理解できない
 - → 雑音優位な天体観測では高感度にはならない
- ▶ ETCCは通常の望遠鏡と同様にPSFが定義可能
 - ⇒ MeVガンマ線天文学の開拓の唯一解
- > SMILE-II/II+ :

豪州気球実験 電子陽電子対消滅線・26AIの銀河面分布観測

銀河系外拡散ガンマ線の起源特定

米国気球実験 かに星雲・Cyg X-1偏光観測

SMILE-III:

極周回気球 ガンマ線バースト偏光観測

高エネルギー電子降りこみ現象の観測

新MeVガンマ線天体の探索